
This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Electrochemical Activation of Sulfur-Synthesis of Organic Mono and Trisulfides with a Sacrificial Carbon-Sulfur Anode

G. Le Guillanton^{ab}; Q. T. Do^{ab}; D. Elothmani^{ab}; J. Simonet^{ac}

^a Laboratoire d'Electrochimie Organique URA CNRS n° 439, ^b Universite Catholique de l'Ouest, ANGERS Cedex 01, (France) ^c Universite de Rennes Beaulieu, RENNES Cedex, (France)

To cite this Article Guillanton, G. Le , Do, Q. T. , Elothmani, D. and Simonet, J.(1993) 'Electrochemical Activation of Sulfur-Synthesis of Organic Mono and Trisulfides with a Sacrificial Carbon-Sulfur Anode', Phosphorus, Sulfur, and Silicon and the Related Elements, 74:1,375-376

To link to this Article: DOI: 10.1080/10426509308038122 URL: http://dx.doi.org/10.1080/10426509308038122

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ELECTROCHEMICAL ACTIVATION OF SULFUR - SYNTHESIS OF ORGANIC MONO AND TRISULFIDES WITH A SACRIFICIAL CARBON-SULFUR ANODE

G. LE GUILLANTON*, Q.T. DO*, D. ELOTHMANI* and J. SIMONET** Laboratoire d'Electrochimie Organique URA CNRS n° 439

Abstract The electrooxidation of sulfur in organic solvents leads to the formation of the cationic species S^{2+} . Macroscale electrolyses are carried out with a sacrificial carbon-sulfur anode. S^{2+} can react either with aromatics to give monosulfides by electrophilic substitution, or with nucleophiles, thiols for example, to give trisulfides.

INTRODUCTION

For the first time electrooxidation of sulfur is conducted at room temperature in organic solvents. An estimated sixteen-electron process leads to the formation of S^{2+} .

$$S_8 \longrightarrow 8 S^{2+} + 16 e^{-}$$

Such electrogenerated sulfur cations are stable in non-nucleophilic solution for several days.

For carrying out macroscale electrolyses it has been used a sacrificial carbon-sulfur anode containing 2 parts of sulfur for 1 part of powdered graphite. This method circumvents advantageously the poor solubility of sulfur in the usual organic solvents.

In a first stage S^{2+} cations are generated by oxidation of this electrode at a working potential of 2.0 - 2.2 V, vs saturated calomel electrode. At the end of electrolysis, a stoicheiometric amount of a suitable substrate is added into the solution to react with.

RESULTS

The use of a sacrificial sulfur electrode for the generation of electrophilic species S²⁺ appears to be a good method of high interest for the electrochemical preparation of thioorganic compounds.

Preparation of monosulfides

These reactions involve attack of the benzene ring by the electrophilic reagent S²⁺

^{*}Université Catholique de l'Ouest, B.P. 808, 49008 ANGERS Cédex 01 (France)

^{**}Université de Rennes Beaulieu, B.P. 25 A, 35042 RENNES Cédex (France)

according to the global mechanism:

$$2 Ar - H + S^{2+} \longrightarrow Ar - S - Ar + 2 H^{+}$$

Yields in diarylsulfides are rather high with aromatic ethers 1, phenols and heterocycles 2, but contrastingly much lower with aromatic amines 2. Yields can be improved if a Lewis acid is added.

We have observed a high regioselectivity which can be modified in some cases by the choice of the medium.

The proposed method presents advantages over the classical technique using sulfur chloride procedures known as hazardous and which emits noxious by-products.

Preparation of trisulfides

S²⁺ can also react with classical nucleophiles and here we give only the example of reaction with thiols or thiolates:³

$$2 R-S^- + S^{2+} \longrightarrow R-S-S-S-R$$

Under these conditions S²⁺ appears to play partially the role of an oxidizing species and therefore the formation of di and tetrasulfides is also observed as side-products. The selectivity is also directly influenced by the experimental conditions.

Consequently the carbon-sulfur electrode can be considered as a powerful tool for the preparation at room temperature of new thioorganic compounds under mild conditions and opens interesting perspectives.⁴ which ought to be developed on an industrial scale when one considers the great importance of sulfur-containing compounds as pharmaceuticals, pesticides, etc.

REFERENCES

- G. LE GUILLANTON, Q.T. DO and J.SIMONET, J. Chem. Soc., Chem. 1. Commun., 393 (1990).
- G. LE GUILLANTON, Q.T. DO, D. ELOTHMANI and J.SIMONET. 2. French patent demande 90 10217, august 09, 1990.
- G. LE GUILLANTON, Q.T. DO and J. SIMONET, 3.
- French patent demande 90 14006, november 12, 1990. G. LE GUILLANTON, Sulfur Rep., 1992, in the press (the use of sacrificial carbon-4. sulfur electrodes - anode and cathode - was reviewed).